Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli.
نویسندگان
چکیده
Human swallowing involves the integration of sensorimotor information with complexities such as taste; however, the interaction between the taste of food and its effects on swallowing control remains unknown. We assessed the effects of pleasant (sweet) and aversive (bitter) tastes on human cortical swallowing motor pathway excitability. Healthy adult male volunteers underwent a transcranial magnetic stimulation (TMS) mapping study (n = 9, mean age: 34 yr) to assess corticobulbar excitability before and up to 60 min after 10-min liquid infusions either 1) as swallowing tasks or 2) delivered directly into the stomach. Infusions were composed of sterile water (neutral), 10% glucose (sweet), and 0.5 mM quinine hydrochloride (bitter). The order of delivery was randomized, and each infusion was given on separate days. Pharyngeal motor-evoked potentials (PMEPs) were recorded from an intraluminal catheter as a measure of corticobulbar excitability and compared using repeated-measures and one-way ANOVA. After the swallowing task (water, glucose, or quinine), repeated-measures ANOVA revealed a significant time interaction across tastants (P </= 0.01). One-way ANOVA for each taste showed changes in PMEP amplitudes for both quinine (P </= 0.001) and glucose (P </= 0.009) solutions but not for water (P = 0.1). Subsequent t-tests showed that glucose and quinine reduced PMEPs by 47% (SD 34) and 37% (SD 54), respectively, at 30 min (P </= 0.03). No changes were observed after the infusion of any solution directly into the stomach (P = 0.51). In conclusion, cortical swallowing pathways are similarly modulated by both sweet and bitter tasting stimuli. Changes likely reflect a close interaction between taste and swallowing activity mediated in the central nervous system.
منابع مشابه
Representation of pleasant and aversive taste in the human brain.
In this study, the representation of taste in the orbitofrontal cortex was investigated to determine whether or not a pleasant and an aversive taste have distinct or overlapping representations in this region. The pleasant stimulus used was sweet taste (1 M glucose), and the unpleasant stimulus was salt taste (0.1 M NaCl). We used an ON/OFF block design in a 3T fMRI scanner with a tasteless sol...
متن کاملInvestigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach
BACKGROUND Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the...
متن کاملIncreased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa.
BACKGROUND Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. METHODS Using functional magnetic resonance imaging (fMRI), the neural response...
متن کاملAjcn27462r 804..813
The cortical processing of umami shows what makes it pleasant and appetitive. The pleasantness of umami reflects and is correlated with processing in the secondary taste cortex in the orbitofrontal cortex and tertiary taste cortex in the anterior cingulate cortex, whereas processing in the primary (insular) taste cortex reflects physical properties such as intensity. However, glutamate presente...
متن کاملEnhancing effects of flavored nutritive stimuli on cortical swallowing network activity.
A better understanding of the central control of the physiology of deglutition is necessary for devising interventions aimed at correcting pathophysiological conditions of swallowing. Positive modulation of the cortical swallowing network can have clinical ramifications in dysphagia due to central nervous system deficits. Our aim was to determine the effect of nutritive sensory input on the cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006